Chem 454 – Voltammetry

Study points:

- Mass Transport in Voltammetry
- Signal to Background Concepts in Voltammetry
- The Axes System in Voltammograms
- Why does voltammetric require 3-electrodes?
- Why is there a need to make sure the sample solution has adequate electrolyte?
- Stripping Voltammetry
- Cyclic Voltammetry

1] A cyclic voltammetric analysis was conducted on a sample containing an aqueous analyte. A 1.00 g sample was dissolved in 100.0 mL of nitric acid. A 50.0 mL aliquot gave an CV ip signal of 5.00 μ A. On the other 50.0 mL aliquot was added a spike of 10.0 μ L of 1.00e-2 M analyte and gave a signal of 6.00 μ A. What is concentration of that analyte in the sample?¹

2] An anodic stripping voltammetric (ASV) analysis was conducted on a soil sample for leachable Cd²⁺ (AW 112.411 g/mol). A 100-gm sample of soil was extracted with 100-mL of 10% CH₃COOH(aq). ASV analysis of that 100-mL extract yielded a Cd(0) oxidation current of 4.31 μ A. A 10- μ L spike of 1.51e-3 M solution of Cd²⁺ was added to the sample solution and the ASV current was measured as 6.77 μ A. What is the concentration of Cd²⁺ in ppb the original sample? ²

3] Sketch a cyclic voltammogram of a hypothetical reversible redox couple A + e^{-} = A⁻. Label the major features and the approximate E^{0} .³

4] Sketch a cyclic voltammogram in which the electrochemical product is completely consumed in a chemical reaction:

A + e⁻ = P

 $P \rightarrow D$

Assume that D is not observed to participate in any further electrochemical or chemical reactions.⁴

5. A voltammetric signal gave a peak current of 10.1 uA for $Cd^{2+} + 2e^{-} = Cd(s)$ in a 20.00 mL water sample. A spike of 0.00100 mL of 0.025 M Cd^{2+} to this sample gives a current of 23.1 μ A. What is the concentration of Cd^{2+} in the sample? ⁵

6] A cyclic voltammetric analysis was conducted on a solution with a quinone that gave a peak current at -0.114 V vs. SCE. A calibration curve was conducted with the following results:

Concentration	Current
(mM)	(µA)
0.095	6.64
0.198	13.29
0.403	26.44
0.594	45.49
0.989	60.11

An unknown solution of that quinone gave a CV peak current of 36.2 uA. What is the concentration of that solution? What is the slope, and intercept of that best fit line? What are the R^2 , S_r , S_m , and S_b of that fitted line? ⁶

Answers

¹ Conc. of analyte in spiked sample = (10.0e-6 L)*(1.00e-2 mol/L)*(1/0.0500 L) = 2.00e-6 Mcalculate slope of 2-point curve: Slope = $(6.00-5.00\mu A)/2.00e-6 M = 5.00e5$ so we have: y = 5.00e5(x) + 5.00 find x-int = -1.00e-5 M² Plot current vs. $[Cd^{2+}]_{spike}$. Conc of spike = (10e-6 L * 1.51e-3M)/0.100-L = 1.51e-7 M

Slope = $(6.77 - 4.31 \,\mu\text{A}) / (1.51e-7 \,\text{M} - 0) = 1.63e7 \,\text{uA} / \text{M}$ y-int = 4.31 uA

line: y = (1.63e7 uA / M) x + 4.31 uA

x-int: 0 = (1.63e7 uA / M) x + 4.31 uA x = - 2.65e-7 M

conc in 100-gm sample

2.65e-7 M * 0.100-L * 112.411 g/mol * 10e9/100-gm = 29.8 ppb (5 points)

3

sum avg	2.279 0.4558	151.97 30.394	1.541595	6602.34	100.3874
Sxx Syy Sxy	0.502827 1983.363 31.11946				
m = b = Sr = Sm = Sb =	61.88903 2.184979 4.37454 6.16912 3.425495				

enter		
Unk	y-unk =	36.2
#		
determ.	M =	4

x - unk =	0.549613	
Sc =	0.047522	
%Sc =	8.646425	%